skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ford, Roseanne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chemotaxis is the ability of certain microscopic organisms to sense and swim towards beneficial or away from detrimental chemicals in their surroundings. Identifying this behavior is important for understanding the relationships between species and their environments in the natural world. Predicting migration of an entire population from known characteristics of individual microorganisms is a key contribution, but can be a laborious process and requires watching and waiting for visual evidence of the process on a large population scale. Sonification offers a novel solution to this problem by allowing the observer to tap into our auditory sensory system to process information. In this project, we developed and assessed a proof-of-concept sonification tool as a high throughput, real-time screening tool for chemotaxis in populations of swimming bacteria. The tool operates by reporting the y-axis position of bacteria that appear in the microscope image as microsecond duration pitched notes, giving the user a sense of the average location of the population. In this paper, we present how it has been used as a chemotaxis assay and as a tool to locate traveling waves of bacteria as they pass through the field of view in order to capture data at specific timepoints, which is used to analyze individual swimming patterns of microorganisms within the wave. 
    more » « less